本帖最后由 流影无踪 于 2022-10-11 19:38 编辑
请先接受以下规则再观看;一、如果增幅成功几率为50%,那么增幅两次,成功几率为1-(0.5*0.5)=0.75 (75%);如果增幅成功几率为20%,那么增幅四次,成功几率为1-(0.8*0.8*0.8*0.8)=0.59 (59%);
二、正常运气:1%几率下100次成、20%几率下5次成功、25%几率下4次成功、50%几率下两次成功。
三、将以上两个规则合并,那就是1-0.99^100=0.63(63%)、1-0.8^5=0.67(67%)、1-0.75^4=0.68(68%)、1-0.5^2=0.75(75%);所以我保守估计75%几率能成功为正常运气
接下来就开始图一乐了。
首先0-4的增幅是不涉及成功率问题的。矛盾算10w/1个(跨一现在应该差不多了)增幅非武器 | 假矛盾 | 消耗金币 | 使用矛盾消耗金币 | 对比安全增幅 | 单个假矛盾价值 | 0-1 | 16 | ¥189,860 | ¥358,720 | ¥168,860 | ¥10,554 | 1~2 | 21 | ¥250,360 | ¥458,720 | ¥208,360 | ¥9,922 | 2~3 | 26 | ¥310,860 | ¥558,720 | ¥247,860 | ¥9,533 | 3~4 | 31 | ¥371,360 | ¥658,720 | ¥287,360 | ¥9,270 |
然后来计算用矛盾增幅的情况。
增幅非武器 | 矛盾 | 消耗金币 | 成功几率 | 正常人(75%) | 消耗矛盾 | 消耗金币 | 总计金币 | 4~5 | 5 | ¥258,720 | 80% | 1(80%) | 5 | ¥258,720 | ¥758,720 | 5~6 | 6 | ¥258,720 | 70% | 2(91%) | 11 | ¥517,440 | ¥1,617,440 | 6~7 | 7 | ¥258,720 | 60% | 2(84%) | 18 | ¥776,160 | ¥2,576,160 | 7~8 | 8 | ¥258,720 | 70% | 2(91%) | 42 | ¥1,811,040 | ¥6,011,040 | 8~9 | 9 | ¥258,720 | 60% | 2(84%) | 80 | ¥3,363,360 | ¥11,363,360 | 9~10 | 10 | ¥258,720 | 50% | 2(75%) | 150 | ¥6,209,280 | ¥21,209,280 | 两次增幅成功的几率为1-0.3^2=0.91(91%)记作2(91%)
4~7的增幅失败会掉1级,所以此处5~6消耗金币为¥258,720(4~5所花费的金币)+¥258,720(增幅5~6所花费的金币)=¥517,440
7~10的增幅失败会掉3级,所以此处7~8消耗金币为¥258,720(4~5所花费的金币)+¥517,440(5~6所花费的金币)+¥776,160(6~7所花费的金币)+¥258,720(增幅7~8所花费的金币)=¥1,811,04
(其他的数据同理)
接着我们计算安全增幅的情况。
增幅非武器 | 假矛盾 | 消耗金币 | 成功几率 | 正常人(75%) | 消耗假矛盾 | 消耗金币 | 4~5 | 46 | ¥490,750 | 70% | 2(94%) | 92 | ¥981,500 | 5~6 | 58 | ¥615,450 | 60% | 2(88%) | 116 | ¥1,230,900 | 6~7 | 98 | ¥1,043,132 | 50% | 2(80%) | 196 | ¥2,086,264 | 7~8 | 109 | ¥1,157,283 | 50% | 2(77.5%) | 218 | ¥2,314,566 | 8~9 | 212 | ¥2,246,200 | 40% | 3(83.5%) | 636 | ¥6,738,600 | 9~10 | 277 | ¥2,937,440 | 30% | 4(84.99%) | 1108 | ¥11,749,760 |
安全增幅4~7时,每次失败成功率增加10%,所以6~7增幅两次的成功率为1-0.5*0.4=0.8(80%),记作2(80%)
(其他的数据同理)
然后我们将两者进行比较发现。
增幅非武器 | 假矛盾 | 消耗金币 | 成功几率 | 正常人(75%) | 消耗假矛盾 | 消耗金币 | 矛盾 | 消耗金币 | 成功几率 | 正常人(75%) | 消耗矛盾 | 消耗金币 | 总计金币 | 对比安全增幅 | 每个假矛盾价值 | 0-1 | 16 | ¥189,860 | 100% | 1(100%) | 16 | ¥189,860 | 1 | ¥258,720 | 100% | 1(100%) | 1 | ¥258,720 | ¥358,720 | ¥168,860 | ¥10,554 | 1~2 | 21 | ¥250,360 | 100% | 1(100%) | 21 | ¥250,360 | 2 | ¥258,720 | 100% | 1(100%) | 2 | ¥258,720 | ¥458,720 | ¥208,360 | ¥9,922 | 2~3 | 26 | ¥310,860 | 100% | 1(100%) | 26 | ¥310,860 | 3 | ¥258,720 | 100% | 1(100%) | 3 | ¥258,720 | ¥558,720 | ¥247,860 | ¥9,533 | 3~4 | 31 | ¥371,360 | 100% | 1(100%) | 31 | ¥371,360 | 4 | ¥258,720 | 100% | 1(100%) | 4 | ¥258,720 | ¥658,720 | ¥287,360 | ¥9,270 | 4~5 | 46 | ¥490,750 | 70% | 2(94%) | 92 | ¥981,500 | 5 | ¥258,720 | 80% | 1(80%) | 5 | ¥258,720 | ¥758,720 | ¥-222,780 | ¥-2,422 | 5~6 | 58 | ¥615,450 | 60% | 2(88%) | 116 | ¥1,230,900 | 6 | ¥258,720 | 70% | 2(91%) | 11 | ¥517,440 | ¥1,617,440 | ¥386,540 | ¥3,332 | 6~7 | 98 | ¥1,043,132 | 50% | 2(80%) | 196 | ¥2,086,264 | 7 | ¥258,720 | 60% | 2(84%) | 18 | ¥776,160 | ¥2,576,160 | ¥489,896 | ¥2,499 | 7~8 | 109 | ¥1,157,283 | 50% | 2(77.5%) | 218 | ¥2,314,566 | 8 | ¥258,720 | 70% | 2(91%) | 42 | ¥1,811,040 | ¥6,011,040 | ¥3,696,474 | ¥16,956 | 8~9 | 212 | ¥2,246,200 | 40% | 3(83.5%) | 636 | ¥6,738,600 | 9 | ¥258,720 | 60% | 2(84%) | 80 | ¥3,363,360 | ¥11,363,360 | ¥4,624,760 | ¥7,272 | 9~10 | 277 | ¥2,937,440 | 30% | 4(84.985%) | 1108 | ¥11,749,760 | 10 | ¥258,720 | 50% | 2(75%) | 150 | ¥6,209,280 | ¥21,209,280 | ¥9,459,520 | ¥8,537 | 合计 | | | | | 2460 | ¥26,224,030 | | | | | 316 | ¥13,970,880 | ¥45,570,880 | ¥19,346,850 | ¥7,865 |
尝试总结:
0~10几乎可以认为是安全增幅会便宜一些。
其中4~5是个特例,原因就是矛盾只增幅了一次(80%几率成功),而安全增幅却增幅了两次(94%几率成功),这似乎有点不公平?
如果你说这样不公平的话。
那5~9似乎对矛盾增幅也不是很公平。
所以我决定得用非洲人的安全增幅来对比正常人的矛盾增幅!
增幅非武器 | 假矛盾 | 消耗金币 | 成功几率 | 非洲人(90%) | 消耗假矛盾 | 消耗金币 | 矛盾 | 消耗金币 | 成功几率 | 正常人(75%) | 消耗矛盾 | 消耗金币 | 总计金币 | 对比安全增幅 | 每个假矛盾价值 | 0-1 | 16 | ¥189,860 | 100% | 1(100%) | 16 | ¥189,860 | 1 | ¥258,720 | 100% | 1(100%) | 1 | ¥258,720 | ¥358,720 | ¥168,860 | ¥10,554 | 1~2 | 21 | ¥250,360 | 100% | 1(100%) | 21 | ¥250,360 | 2 | ¥258,720 | 100% | 1(100%) | 2 | ¥258,720 | ¥458,720 | ¥208,360 | ¥9,922 | 2~3 | 26 | ¥310,860 | 100% | 1(100%) | 26 | ¥310,860 | 3 | ¥258,720 | 100% | 1(100%) | 3 | ¥258,720 | ¥558,720 | ¥247,860 | ¥9,533 | 3~4 | 31 | ¥371,360 | 100% | 1(100%) | 31 | ¥371,360 | 4 | ¥258,720 | 100% | 1(100%) | 4 | ¥258,720 | ¥658,720 | ¥287,360 | ¥9,270 | 4~5 | 46 | ¥490,750 | 70% | 2(94%) | 92 | ¥981,500 | 5 | ¥258,720 | 80% | 1(80%) | 5 | ¥258,720 | ¥758,720 | ¥-222,780 | ¥-2,422 | 5~6 | 58 | ¥615,450 | 60% | 3(97.6%) | 174 | ¥1,846,350 | 6 | ¥258,720 | 70% | 2(91%) | 11 | ¥517,440 | ¥1,617,440 | ¥-228,910 | ¥-1,316 | 6~7 | 98 | ¥1,043,132 | 50% | 3(94%) | 294 | ¥3,129,396 | 7 | ¥258,720 | 60% | 2(84%) | 18 | ¥776,160 | ¥2,576,160 | ¥-553,236 | ¥-1,882 | 7~8 | 109 | ¥1,157,283 | 50% | 3(91%) | 327 | ¥3,471,849 | 8 | ¥258,720 | 70% | 2(91%) | 42 | ¥1,811,040 | ¥6,011,040 | ¥2,539,191 | ¥7,765 | 8~9 | 212 | ¥2,246,200 | 40% | 5(97.03%) | 1060 | ¥11,231,000 | 9 | ¥258,720 | 60% | 2(84%) | 80 | ¥3,363,360 | ¥11,363,360 | ¥132,360 | ¥125 | 9~10 | 277 | ¥2,937,440 | 30% | 5(92.5%) | 1385 | ¥14,687,200 | 10 | ¥258,720 | 50% | 2(75%) | 150 | ¥6,209,280 | ¥21,209,280 | ¥6,522,080 | ¥4,709 | 合计 | | | | | 3426 | ¥36,469,735 | | | | | 316 | ¥13,970,880 | ¥45,570,880 | ¥9,101,145 | ¥2,656 |
没错,这样就挺“公平”了。
从上面这个表格可以看出来
1、0~4增幅每次能节省20w左右,每个假矛盾的价值在9k左右。
2、4~9的增幅,其实还是挺看运气的,不是那么建议用安全增幅,因为材料也不多,
3、9~10的增幅,建议安全增幅,除非你9~10一次就成功,或者你从4~9上的很顺,否则是亏定的。
|